Trigonometri
• Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Baris dan Deret
• BARISAN GEOMETRI
U1, U2, U3, ..., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = ... = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , .......arn-1
U1, U2, U3,......,Un
Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)
• DERET GEOMETRI
a + ar² + ... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku
Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)
Keterangan:
a. Rasio antara dua suku yang berurutan adalah tetap
b. Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
c. Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1
Bergantian naik turun, jika r < 0
d. Berlaku hubungan Un = Sn - Sn-1
e. Jika banyaknya suku ganjil, maka suku tengah
_______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.
f. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
• DERET GEOMETRI TAK BERHINGGA
Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + ...........
å Un = a + ar + ar² ............
n=1
dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0
Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r)
Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1
Catatan:
a + ar + ar2 + ar3 + ar4 + ...........
Jumlah suku-suku pada kedudukan ganjil
a+ar2 +ar4+ ....... Sganjil = a / (1-r²)
Jumlah suku-suku pada kedudukan genap
a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²
Didapat hubungan : Sgenap / Sganjil = r
BANGUN DATAR
Luas = s x s = s2
Keliling = 4 x s
dengan s = panjang sisi persegi
* Rumus Persegi Panjang
Luas = p x l
Keliling = 2p + 2l = 2 x (p + l)
dengan p = panjang persegi panjang, dan l = lebar persegi panjang
* Rumus Segitiga
Luas = ½ x a x t
dengan a = panjang alas segitiga, dan t = tinggi segitiga
Panjang sisi miring segitiga siku-siku dicari dengan rumus Phytagoras (A2 + B2 = C2)
* Rumus Jajar Genjang
Luas = a x t
dengan a = panjang alas jajargenjang, dan t = tinggi jajargenjang
* Rumus Trapesium
Luas = ½ x (s1 + s2) x t
dengan s1 dan s2 = sisi-sisi sejajar pada trapesium, dan t = tinggi trapesium
* Rumus Layang-layang
Luas = ½ x diagonal (d) 1 x diagonal (d) 2
* Rumus Belah Ketupat
Luas = ½ x diagonal (d) 1 x diagonal (d) 2
* Rumus Lingkaran
Luas = ? (pi) x jari-jari (r) x jari-jari (r)
Sifat-sifat bangun datar
• Layang-layang= terbagi atas 2 digonal yang berbeda ukurannya
• Persegi = semua sisi-sisinya sama besar
• Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Baris dan Deret
• BARISAN GEOMETRI
U1, U2, U3, ..., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = ... = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , .......arn-1
U1, U2, U3,......,Un
Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)
• DERET GEOMETRI
a + ar² + ... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku
Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)
Keterangan:
a. Rasio antara dua suku yang berurutan adalah tetap
b. Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
c. Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1
Bergantian naik turun, jika r < 0
d. Berlaku hubungan Un = Sn - Sn-1
e. Jika banyaknya suku ganjil, maka suku tengah
_______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.
f. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
• DERET GEOMETRI TAK BERHINGGA
Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + ...........
å Un = a + ar + ar² ............
n=1
dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0
Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r)
Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1
Catatan:
a + ar + ar2 + ar3 + ar4 + ...........
Jumlah suku-suku pada kedudukan ganjil
a+ar2 +ar4+ ....... Sganjil = a / (1-r²)
Jumlah suku-suku pada kedudukan genap
a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²
Didapat hubungan : Sgenap / Sganjil = r
BANGUN DATAR
Luas = s x s = s2
Keliling = 4 x s
dengan s = panjang sisi persegi
* Rumus Persegi Panjang
Luas = p x l
Keliling = 2p + 2l = 2 x (p + l)
dengan p = panjang persegi panjang, dan l = lebar persegi panjang
* Rumus Segitiga
Luas = ½ x a x t
dengan a = panjang alas segitiga, dan t = tinggi segitiga
Panjang sisi miring segitiga siku-siku dicari dengan rumus Phytagoras (A2 + B2 = C2)
* Rumus Jajar Genjang
Luas = a x t
dengan a = panjang alas jajargenjang, dan t = tinggi jajargenjang
* Rumus Trapesium
Luas = ½ x (s1 + s2) x t
dengan s1 dan s2 = sisi-sisi sejajar pada trapesium, dan t = tinggi trapesium
* Rumus Layang-layang
Luas = ½ x diagonal (d) 1 x diagonal (d) 2
* Rumus Belah Ketupat
Luas = ½ x diagonal (d) 1 x diagonal (d) 2
* Rumus Lingkaran
Luas = ? (pi) x jari-jari (r) x jari-jari (r)
Sifat-sifat bangun datar
• Layang-layang= terbagi atas 2 digonal yang berbeda ukurannya
• Persegi = semua sisi-sisinya sama besar
0 komentar:
Posting Komentar